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Abstract

By working with several specific Poisson–Lie groups arising from Heisenberg Lie bialgebras and
by carrying out their quantizations, a case is made for a useful but simple method of constructing
locally compact quantum groups. The strategy is to analyze and collect enough information from a
Poisson–Lie group, and using it to carry out a “cocycle bicrossed product construction”. Constructions
are done using multiplicative unitary operators, obtainingC∗-algebraic, locally compact quantum
(semi-)groups.
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1. Introduction

Typically, the most commonly employed method of constructing specific examples of
quantum groups is the method of “generators and relations”. This is certainly the case in
the purely algebraic setting of quantized universal enveloping (QUE) algebras. Even in the
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C∗-algebra setting, compact quantum groups are usually constructed in this way (see, for
instance,[26]).

However, when one wishes to construct a non-compact quantum group, this method is
not so useful: the generators (essentially the coordinate functions of a group) tend to be
unbounded, which gives rise to various technical difficulties. There are ways to handle the
difficulties (see[27], where Woronowicz works with the notion of unbounded operators
“affiliated” with C∗-algebras), but in general, it is usually better to look for some other
methods of construction.

One useful approach not relying on the generators is via the method of deformation quan-
tization. Here, the aim is to deform the (commutative) algebra of functions on a Poisson
manifold, in the direction of the Poisson bracket. See[2,25]. [In the C∗-algebra frame-
work, the corresponding notion is the “strict deformation quantization” by Rieffel[19], or
its more generalized versions developed later by other authors.] One should recall, how-
ever, that this is just a “spatial” deformation, in the sense that the deformation is only for
the algebra structure. To obtain a quantum group, one begins with a suitable Poisson–Lie
groupG (a Lie group equipped with a compatible Poisson bracket) and perform the de-
formation quantization on the function spaceC0(G) – for both its algebra and coalgebra
structures.

Some of the non-compact quantum groups obtained by deformation quantization are
[20,22,21,29,9]. In these examples, the information at the level of Poisson–Lie groups or
Lie bialgebras plays a key role in constructing the quantum groups and their structures.
Naturally, there exists a very close relationship between a quantum group obtained in this
way and its Poisson–Lie group counterpart.

This last point is quite helpful in working with the quantum group. For instance, as for
the example considered by the author in[9], the information from the classical (Poisson)
level was useful not only in the construction of the quantum group but also in studying its
representation theory, in relation to the dressing orbits[10,13].

On the other hand, despite many advantages, there are some drawbacks to the method of
deformation quantization, especially when one wishes to carry it out in theC∗-algebra set-
ting: jumping from the classical level of Poisson–Lie groups to theC∗-algebraic quantum
group level is not necessarily an easy task. Even with the guides provided from Pois-
son data, the actual construction of the structure maps like comultiplication, antipode, or
Haar weight often should be done by using different methods. Among the useful tools
is the notion of “multiplicative unitary operators” (in the sense of Baaj and Skandalis
[1]).

Considering the drawbacks to the geometric approach above, we turn to a more algebraic
method of constructing locally compact quantum groups, via the framework of (cocycle)
bicrossed products. This goes back to the problem of group extensions in the Kac algebra
setting (see[5] for a survey on Kac algebras), and was made systematic by Majid[16,17].
Here, one begins with a certain “matched pair” of groups (or more generally, locally compact
quantum groups) and build a larger quantum group as a bicrossed product, possibly with a
cocycle. Baaj and Skandalis has a version of this in Section 8 of[1]. For a comprehensive
treatment about this framework, see[23].

The best aspect about the bicrossed product method is that it is relatively simple, while
sufficiently general to include many special cases. However, as is the case for any general
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method, having the framework is not enough to construct actual and specific examples: one
needs to have a specific matched pair, together with a compatible cocycle, for this method
to work.

So we propose here to combine the advantages of the “geometric” (deformation quanti-
zation) method and the “algebraic” framework of cocycle bicrossed products. That is, we
first begin with a Poisson–Lie group and analyze its Poisson structure. The Poisson data
will help us obtain a suitable matched pair and a compatible cocycle. Then we perform the
cocycle bicrossed product construction.

Quantum groups obtained in this way tend to have (twisted) crossed products as their un-
derlyingC∗-algebras. And therefore, this program is usually best for constructing solvable-
type quantum groups. It is because crossed products often model quantized spaces (for
instance, the “Weyl algebra”,C0(Rn) �τ R

n with τ being the translation, is the quantized
phase space[7]). But with some adjustments, the method could be adopted to construct
other types of quantum groups. Meanwhile, having a close connection with the Poisson–
Lie group enables us to take advantage of its geometric data in further studying the quantum
group as well as in applications.

Our plan in this paper is to illustrate this program through examples, using Poisson–Lie
groups associated with several Heisenberg-type Lie bialgebras. Three specific cases are
considered. In Case (2), we re-construct our earlier example from[9], which quantizes a
certain non-linear Poisson bracket. Case (1) corresponds to a linear Poisson bracket (so
a little simpler), and is related with the examples from[20,22,24]. Case (3) is similar to
the example given in[6], but is more general. Afterwards, we give more constructions of
similar-flavored examples.

To keep the presentation coherent and simple, we will not stray too much away from the
Heisenberg-type Lie bialgebras and their quantum counterparts. In this article, the focus is
not on giving genuinely new examples, but on showcasing a simple but useful method of
constructing specific quantum groups. [Nevertheless, we do obtain a new example below
in Case (3) of Section3.] In this way, we make a case that the geometric, deformation
quantization method and the algebraic, bicrossed product method are very much compatible.
Examples constructed with the same program but coming from different Poisson–Lie groups
will be presented in our future work.

The paper is organized as follows. In Section2, we discuss some specific Poisson struc-
tures coming from various Heisenberg Lie bialgebras. Three specific cases are considered.
In Section3, we carry out the quantizations of the cases from Section2. By analyzing
the Poisson brackets, we obtain, for each of the three cases, a matched pair and a cocy-
cle. These data help us to construct a multiplicative unitary operator, which represents the
cocycle bicrossed product construction.

More examples are given in Section4, by slightly modifying the results obtained
in Section3. Along the way, we will make frequent comparisons between the exam-
ples in Sections3 and 4, and several other examples obtained elsewhere using different
methods.

Appendix A shows that the Poisson structures considered in Section2 actually arise
from certain “classicalr-matrices”. Remembering that a “quantumR-matrix” type operator
played a significant role in the representation theory of our earlier example[9,10], this is a
useful knowledge.
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2. Lie bialgebra structures on a Heisenberg Lie algebra: the Poisson–Lie groups

Let H be the (2n+ 1)-dimensional Heisenberg Lie group. Its underlying space isR
2n+1

and the multiplication on it is given by

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z+ z′ + (x, y′)),

for x, x′, y, y′ ∈ R
n andz, z′ ∈ R. Here,β(·, ·) denotes the ordinary inner product.

Its Lie algebra counterpart is the Heisenberg Lie algebrah. It is generated by the basis
elementsxi, yi (i = 1, . . . , n), z, with the following relations:

[xi, yj] = δijz, [z, xi] = [z, yi] = 0.

For convenience, we will identifyH ∼= h as vector spaces. This is possible sinceH
is an exponential solvable Lie group (it is actually nilpotent). We will understand that
x = x1x1 + · · · + xnxn, and similarly for the other variables. And, we choose a Lebesgue
measure onH ∼= h, which is a Haar measure forH.

For a Heisenberg Lie group, all the possible compatible Poisson brackets on it have
been classified by Szymczak and Zakrzewski[22]. Among these, we will specifically
look at the following, simpler cases (seeDefinition 2.1below). The Poisson brackets are
described in terms of the cobracketsδ : h→ h ∧ h, which are one-cocycles with respect to
the adjoint representation. It is known from general theory that specifying in such a way a
“Lie bialgebra” structure, (h, δ), is equivalent to giving an explicit formula for the Poisson
bracket onH (see[15]).

Definition 2.1.

(1) Considerδ1 : h→ h ∧ h defined by

δ1(xj) = λxj ∧ z, δ1(yj) = −λyj ∧ z, δ1(z) = 0.

Hereλ ∈ R. To obtain a non-trivial map, we letλ �= 0.
(2) Letλ �= 0 again, and letδ2 : h→ h ∧ h be defined by

δ2(xj) = λxj ∧ z, δ2(yj) = λyj ∧ z, δ2(z) = 0.

(3) Let (Jij) be a skew,n× n matrix (n ≥ 2), and letδ3 : h→ h ∧ h be defined by

δ3(xj) = 0, δ3(yj) =
n∑
i=1

Jijxi ∧ z, δ3(z) = 0.

We do not give here an explicit proof that these are indeed Lie bialgebra structures
on h giving us the compatible Poisson brackets onH. Instead, we can refer to Theo-
rem 2.2 of[22], and in the case ofδ2 above, a careful discussion was given in Section
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1 of [9]. See alsoAppendix A, where we show that they arise from certain “classical
r-matrices”.

Corresponding to each of these Poisson brackets, we can define a Lie bracket on the dual
spaceh∗ of h by [·, ·] = δ∗ : h∗ ∧ h∗ → h∗. That is, [µ, ν] is defined by

〈[µ, ν], X〉 = 〈δ∗(µ⊗ ν), X〉 = 〈µ⊗ ν, δ(X)〉, (∗)

whereX ∈ h, µ, ν ∈ h∗, and 〈·, ·〉 is the dual pairing betweenh∗ and h. In this way,
we obtain the following “dual” Lie algebra for each of the cases. The proof is straight-
forward.

Proposition 2.2. Let g = h∗ be spanned by pi,qi (i = 1, . . . , n), r, which form the dual
basis of xi, yi (i = 1, . . . , n), z

(1) On g, define the Lie algebra relations for the basis vectors as follows:

[pi,qj] = 0, [pi, r] = λpi, [qi, r] = −λqi.

Then g is the Poisson dual of the Lie bialgebra (h, δ1).
(2) On g, define the Lie algebra relations for the basis vectors by

[pi,qj] = 0, [pi, r] = λpi, [qi, r] = λqi.

This is the Poisson dual of the Lie bialgebra (h, δ2).
(3) On g, define the Lie algebra relations by

[pi,qj] = 0, [pi, r] =
n∑
j=1

Jijqj, [qi, r] = 0.

This is the Poisson dual of the Lie bialgebra (h, δ3).

Each of the dual Lie algebrasg is actually a Lie bialgebra, whose cobracket
θ : g→ g ∧ g is the dual map of the Lie bracket onh. This situation is exactly same as
in Eq.(∗). In other words,θ : g→ g ∧ g is defined by its values on the basis vectors ofg as
follows:

θ(pi) = 0, θ(qi) = 0, θ(r) =
n∑
i=1

(pi ⊗ qi − qi ⊗ pi) =
n∑
i=1

(pi ∧ qi).

We thus have the (Poisson dual) Lie bialgebra (g, θ), for each of the Heisenberg Lie
bialgebras inDefinition 2.1. Let us now consider the corresponding Poisson–Lie groups
G (dual to the Heisenberg Lie group), together with their Poisson brackets. As before, we
will understandp = p1p1 + p2p2 + · · · + pnpn, and similarly for the other variables (this
explains the notation we use in (3) below).
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Proposition 2.3.

(1) Let G be the (2n+ 1)-dimensional Lie group, whose underlying space is R
2n+1 and

the multiplication law is defined by

(p, q, r)(p′, q′, r′) = (eλr
′
p+ p′, e−λr′q+ q′, r + r′).

It is the Lie group corresponding to g from Proposition 2.2(1). The Poisson bracket on
G is given by the expression

{φ,ψ}(p, q, r) = r(β(x, y′) − β(x′, y)),

forφ,ψ ∈ C∞(G).Here dφ(p, q, r) = (x, y, z) and dψ(p, q, r) = (x′, y′, z′),which are
naturally considered as elements of h.

(2) Let G be the (2n+ 1)-dimensional Lie group, whose underlying space is R
2n+1 and

together with the multiplication law

(p, q, r)(p′, q′, r′) = (eλr
′
p+ p′, eλr

′
q+ q′, r + r′).

It is the Lie group corresponding to g from Proposition 2.2(2). The Poisson bracket on
G is given by

{φ,ψ}(p, q, r) =
(

e2λr − 1

2λ

)
(β(x, y′) − β(x′, y)),

for φ,ψ ∈ C∞(G). Here again, we use the natural identification of dφ(p, q, r) =
(x, y, z) and dψ(p, q, r) = (x′, y′, z′) as elements of h.

(3) Let G be the (2n+ 1)-dimensional Lie group, together with the multiplication law

(p, q, r)(p′, q′, r′) =

p+ p′, q+ q′ + r′

n∑
i,j=1

Jijpiqj, r + r′

 .

For it to be non-trivial, we need n ≥ 2. This gives us the Lie group corresponding to g
from Proposition 2.2(3). The Poisson bracket on G is given by

{φ,ψ}(p, q, r) = r(β(x, y′) − β(x′, y)) + r2

2

n∑
k,j=1

Jkj(yjy
′
k − yky

′
j),

for φ,ψ ∈ C∞(G). Again, dφ(p, q, r) = (x, y, z) and dψ(p, q, r) = (x′, y′, z′), viewed
as elements of h.

Proof. ConstructingG from g is rather straightforward. In each of the three cases,G is
a (connected and simply connected) exponential solvable Lie group corresponding tog.



B.J. Kahng / Journal of Geometry and Physics 56 (2006) 485–511 491

As before, we can identifyG ∼= g as vector spaces. Note that the definitions of the group
multiplications are chosen in such a way that an ordinary Lebesgue measure becomes the
Haar measure forG (in particular, for Case (2)).

To find the expression for the Poisson bracket, we follow the standard procedure: First,
consider Ad :G → Aut(g), the adjoint representation ofG on g. We then look for a map
F : G → g ∧ g, that is a group one-cocycle onG for the Ad-representation and whose
derivative at the identity element, dFe, coincides withθ above. Note that sinceθ depends
only on ther-variable, so shouldF. In other words, we look for a mapF such that:

F (r + r′) = F (r) + Ad(0,0,r)F (r′), dF(0,0,0)(r) = θ(r) = r

n∑
k=1

(pk ∧ qk).

Once we have the one-cocycleF, the Poisson bivector field is then obtained by the right
translation ofF.

It is true that integratingθ to F is not always easy. However, it is not too difficult in our
three cases above, due to our Lie bialgebra structures being rather simple. In particular, for
Case (2), the computation was given in the proof of Theorem 2.2 in[9]. Case (1) is similar
but easier, since the mapF (and the Poisson bracket) is linear.

As for Case (3), note first that the representation Ad sends the basis vectors ofg as
follows:

Ad(0,0,r)(pk) = (0,0, r)pk(0,0,−r) = pk − r

n∑
j=1

Jkjqj,

Ad(0,0,r)(qk) = qk, Ad(0,0,r)(r) = r.

Considering the requirements for the mapF given above, we obtain the following expression
for F:

F (p, q, r) = F (r) = r

n∑
k=1

(pk ∧ qk) − r2

2

n∑
k,j=1

(Jkjqj ∧ qk).

Since the right translations areR(p,q,r)∗(pk) = pk + r
∑n
j=1 Jkjqj and sinceR(p,q,r)∗(qk) =

qk, we thus have the expression for our Poisson bracket:

{φ,ψ}(p, q, r) = 〈R(p,q,r)∗F (p, q, r), dφ(p, q, r) ∧ dψ(p, q, r)〉

= r(β(x, y′) − β(x′, y)) + r2

2

n∑
k,j=1

Jkj(yjy
′
k − yky

′
j). �

Remark 2.4. Cases (1) and (2) look almost the same, and the difference may look rather
innocent. However, Case (1) gives us a linear Poisson bracket, while Case (2) is non-linear.
Note also that the groupG is unimodular in Case (1), whileG is non-unimodular in Case (2).
It turns out that Case (2) is technically deeper, while having richer properties: for instance, in
working with the Haar weight and in representation theory of its quantum group counterpart
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(see[9,10,12,13]). Meanwhile, Case (3) gives another non-linear Poisson bracket (in this
situation,G is unimodular).

3. Construction of quantum groups

Now that we have described our Poisson–Lie groups, let us construct their quantum
group counterparts. But first, we should mention that these cases are not totally new, having
been studied elsewhere previously (though Case (3) will be new). As we noted in Section 1,
our real focus is on illustrating our improved approach of using the Poisson data to obtain
quantum groups, via “cocycle bicrossed products”.

Considering this, it will be sufficient to just describe appropriate multiplicative unitary
operators. As is known in general theory[1,28,14], having a “regular” (or more generally,
“manageable”) multiplicative unitary operator gives rise to aC∗-bialgebra, which is really
a quantum semigroup. As for the theory on cocycle bicrossed products in theC∗-algebraic
quantum group setting, we refer[23]. On the other hand, since we are planning to work
with multiplicative unitary operators, our approach will be actually closer to that given in
Section 8 of[1].

In the below, we treat separately the three cases we described in the previous sec-
tion. Using the Poisson geometric data as a guide, we will find a suitable matched pair
and a compatible cocycle. We will use this information to construct a multiplicative uni-
tary operator, giving rise to aC∗-bialgebra having the structure of a cocycle bicrossed
product.

3.1. Cases (1) and (2)

Finding the multiplicative unitary operators for Cases (1) and (2) goes essentially the
same way. Since Case (2) is the more complicated one between the two, we will look at
this case more carefully. Compare with the construction procedure given in Sections 2 and
3 of [9], where the approach relied much more on Poisson geometry and the deformation
process.

Since we will use the non-linear expression (e2λr − 1)/2λ quite often, let us give it
the special notation,ηλ(r). Note that ifλ = 0, it degenerates into the linear expression
ηλ=0(r) = r.

From now on, let the groupG and the Poisson bracket on it be as described inProposition
2.3 (2). It is the dual Poisson–Lie group ofH, corresponding to the Lie bialgebra (h, δ2).
Meanwhile, letZ = {(0,0, z) : z ∈ R} be the center ofH. Its Lie algebra counterpart is
denoted byz(⊆ h). From the expression of the Poisson bracket, we obtain the following
continuous field of group cocycles forH/Z.

Proposition 3.1. Let r ∈ h∗/z⊥. Define the map σr : H/Z ×H/Z → T by

σr((x, y), (x′, y′)) = ē[ηλ(r)β(x, y′)],
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where e(t) = e2πit , so ē(t) = e−2πit . Then each σr is a T-valued, normalized group cocycle
for H/Z. Moreover, r �→ σr forms a continuous field of cocycles.

Remark 3.2. Verifying the cocycle identity is straightforward, and the continuity is also
clear. The point is that our Poisson bracket can be written as a sum of the (trivial) linear Pois-
son bracket on (h/z)∗ and the mapω, whereω : ((x, y), (x′, y′)) �→ ηλ(r)((x, y′), β(x′, y))
is a Lie algebra cocycle onh/z having values inC∞(h∗/z⊥). We then obtain the group
cocycleσ above, by “integrating”ω. In a more general setting, this procedure of finding a
group cocycle from a Poisson bracket is discussed in[8] (see, in particular, the discussion
from Theorem 2.2 to Proposition 3.3 in that paper).

In addition to giving us the group cocycleσ, the Poisson bracket strongly suggests us
to work with the (x, y; r) variables, where (x, y) ∈ H/Z andr ∈ h∗/z⊥. Dual space toH/Z
is (h/z)∗ = z⊥, whose typical element is denoted by (p, q). Let us take this suggestion and
break the groupG into two, obtaining the following matched pair.

Definition 3.3. LetG1 andG2 be subgroups ofG, defined by

G1 = {(0,0, r) : r ∈ R}, G2 = {(p, q,0) : p, q ∈ R
n}.

Clearly, as a spaceG ∼= G2 ×G1. Moreover,G1 andG2 are closed subgroups ofG, such
thatG1 ∩G2 = {(0,0,0)}. And, any element (p, q, r) of G can be (uniquely) expressed
as a product: (p, q, r) = (0,0, r)(p, q,0), with (0,0, r) ∈ G1 and (p, q,0) ∈ G2. In other
words, the groupsG1 andG2 form amatched pair.

From the matched pair, we naturally obtain the group actionsα : G1 ×G2 → G2 and
γ : G2 ×G1 → G1, defined by

αr(p, q) := (e−λrp, e−λrq), γ(p,q)(r) := r.

Here we are using the obvious identification of (p, q) with (p, q,0), and similarly forr
and (0,0, r). Note that these actions are defined so that we have: (αr(p, q))(γ(p,q)(r)) =
(e−λrp, e−λrq,0)(0,0, r) = (p, q, r).

Let us now convert the information we obtained so far into the language of Hilbert space
operators and operator algebras. To begin with, let us fix a Lebesgue measure onH(= h),
which is the Haar measure forH. And onG(= g), which is considered as the dual vector
space ofH, we give the dual Lebesgue measure. (As noted earlier, this will be again the Haar
measure forG.) They are chosen so that the Fourier transform becomes the unitary operator
(fromL2(H) toL2(G)), and the Fourier inversion theorem holds. Similarly, “partial” Fourier
transform can be considered: for instance, between functions in the (p, q; r) variables and
those in the (x, y; r) variables. See Remark 1.7 of[9].

Following Baaj and Skandalis[1], the information about the groupsG1 andG2 can be
incorporated into certain multiplicative unitary operatorsX andY. The result is given below.
Note that we are also expressing our operators in the (x, y; r) variables, so that we can later
work within that setting.
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Proposition 3.4. LetX ∈ B(L2(G1 ×G1)) and Y ∈ B(L2(G2 ×G2)) be defined such that
for ξ ∈ L2(G1 ×G1) and ζ ∈ L2(G2 ×G2), we have:

Xξ(r; r′) = ξ(r + r′; r′), Yζ(p, q;p′, q′) = ζ(p+ p′, q+ q′;p′, q′).

They are multiplicative unitary operators. Meanwhile, by Fourier transform, Y can be ex-
pressed as an operator contained inB(L2(H/Z ×H/Z)), in the (x, y) variables. This means
that we are regarding F−1YF as same as Y, for convenience. It then reads:

Yζ(x, y; x′, y′) = ζ(x, y; x′ − x, y′ − y), ζ ∈ L2(H/Z).

We have:

C0(G1) ∼= {(ω ⊗ id)(X) : ω ∈ B(L2(G1))∗}‖ ‖ ⊆ B(L2(G1)),

C∗(G1) ∼= {(id ⊗ ω)(X) : ω ∈ B(L2(G1))∗}‖ ‖ ⊆ B(L2(G1)),

C0(G2) ∼= C∗(H/Z) ∼= {(ω ⊗ id)(Y ) : ω ∈ B(L2(H/Z))∗}‖ ‖ ⊆ B(L2(H/Z)),

C∗(G2) ∼= C0(H/Z) ∼= {(id ⊗ ω)(Y ) : ω ∈ B(L2(H/Z))∗}‖ ‖ ⊆ B(L2(H/Z)).

Proof. We are just following[1]. For the expression of the operatorY ∈ B(L2(H/Z ×
H/Z)), we used the Fourier inversion theorem. Since the groups are abelian, all the com-
putations are quite simple. �

By the result ofProposition 3.4, a functionf ∈ C0(G1) is considered same as the multi-
plication operatorLf ∈ B(L2(G1)), defined byLf ξ(r) = f (r)ξ(r). Similar forg ∈ C0(G2),
which is also considered as the multiplication operatorλg ∈ B(L2(G2)). In the (x, y)
variables, this is equivalent to saying that forg ∈ Cc(H/Z) ⊆ C∗(H/Z), the operator
Lg ∈ B(L2(H/Z)) is such that forζ ∈ L2(H/Z), we have:

Lgζ(x, y) =
∫
g(x̃, ỹ)ζ(x− x̃, y − ỹ) dx̃ dỹ.

At the level of theC∗-algebrasC0(G1) andC0(G2), the group actionsα andγ we obtained
earlier (thoughγ is trivial) are expressed as coactionsα : C0(G2) → M(C0(G2) ⊗ C0(G1))
andγ : C0(G1) → M(C0(G2) ⊗ C0(G1)), given by

α(g)(p, q; r) = g(e−λrp, e−λrq) = g(αr(p, q)),

γ(f )(p, q; r) = f (r) = f (γ(p,q)(r)).

Furthermore, the coactionsα andγ can be realized using a certain unitary operatorZ, as
follows.

Proposition 3.5. Let Z ∈ B(L2(G)) = B(L2(G2 ×G1)) be defined by

Zξ(p, q; r) = (e−λr)nξ(e−λrp, e−λrq; r).
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Then we have, for g ∈ C0(G2) and f ∈ C0(G1),

Z(λg ⊗ 1)Z∗ = (λ⊗ L)(α(g)), Z(1 ⊗ Lf )Z∗ = (λ⊗ L)(γ(f )).

Proof. A straightforward computation shows that forξ ∈ L2(G)

Z(λg ⊗ 1)Z∗ξ(p, q, r) = g(e−λrp, e−λrq)ξ(p, q, r) = (λ⊗ L)(α(g))ξ(p, q, r).

And similarly,Z(1 ⊗ Lf )Z∗ = (λ⊗ L)(γ(f )). �

Remark 3.6. By using the operator realizationsg = λg andf = Lf , as well asα(g) =
(λ⊗ L)(α(g)) andγ(f ) = (λ⊗ L)(γ(f )), we may simply write the above result as:α(g) =
Z(g⊗ 1)Z∗ andγ(f ) = Z(1 ⊗ f )Z∗.

Since we prefer to work with the (x, y; r) variables, it will be more convenient to intro-
duce the Hilbert spaceH := L2(H/Z ×G1), consisting of theL2-functions in the (x, y; r)
variables. Then by considering thatG2 = (H/Z)∗, or equivalently thatC0(G2) ∼= C∗(H/Z),
we may as well regard the coactionsα andγ to be onC∗(H/Z) andC0(G1). (In that case,
the definitions ofα andγ should be modified accordingly.) In this setting, the operatorZ
will becomeZ ∈ B(H), defined by

Zξ(x, y; r) = (eλr)nξ(eλrx, eλry; r).

The multiplicative unitary operator associated to the matched pair (G1,G2) is given in
the next proposition. It gives us twoC∗-bialgebras, which are the bicrossed product algebras
coming from the matched pair. Note that at this moment, the cocycle is not considered yet.

Proposition 3.7. Let V ∈ B(H⊗H) = B(L2(H/Z ×G1 ×H/Z ×G1)) be the unitary
operator defined by

V = (Z12X24Z
∗
12)Y13,

where we are using the standard leg notation. More specifically

Vξ(x, y, r; x′, y′, r′) = (e−λr′ )nξ(e−λr′x, e−λr′y, r + r′; x′ − e−λr′x, y′ − e−λr′y, r′).

It is multiplicative, and by considering the “ left [and right] slices” of V, we obtain the
following two C∗-algebras, as contained in the operator algebra B(H):

AV = {(ω ⊗ idH)(V ) : ω ∈ B(H)∗} ∼= C0(G1) �γ (H/Z),

ÂV = {(idH ⊗ ω)(V ) : ω ∈ B(H)∗} ∼= C0(H/Z) �α G1.

Here the actions are defined by γ(x,y)(r) := r (trivial action), and αr(x, y) := (eλrx, eλry).
The algebras AV and ÂV are actually C∗-bialgebras, whose comultiplications are given
by �V (a) = V (a⊗ 1)V ∗ for a ∈ AV , and �̂V (b) = V ∗(1 ⊗ b)V for b ∈ ÂV .
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Remark 3.8. The choice of the operatorV is suggested from Section 8 of[1], where
discussions are given on obtaining multiplicative unitary operators from a matched pair
(couple assorti). The point is that the operatorsX andY encode the groupsG1 andG2,
while the operatorZ carries the information about the actionsα andγ. Indeed, the statement
above concerning the characterizations forAV andÂV is a fairly general result.

Proof. We skip the proof thatV is multiplicative, though a direct verification of the mul-
tiplicativity is not really difficult. Instead, we point out thatV is actually a degenerate case
of the multiplicative unitary operatorU given in [9] (see proof ofProposition 3.9below).
Once it is known thatV is indeed multiplicative, the general theory assures us that we have
a pair ofC∗-bialgebrasAV andÂV , contained inB(H).

Meanwhile, it is also not difficult to show directly that as aC∗-algebra, we have:AV ∼=
L(Cc(H/Z ×G1))

‖ ‖
, where

Lf ξ(x, y; r) =
∫
f (x̃, ỹ; r)ξ(x− x̃, y − ỹ; r) dx̃ dỹ,

for f ∈ Cc(H/Z ×G1) andξ ∈ H. It then follows that:AV ∼= C0(G1) � (H/Z), which is
the crossed product algebra with the trivial action.

Similarly, we can also show thatÂV ∼= ρ(Cc(H/Z ×G1))
‖ ‖

, where

ρf ξ(x, y; r) =
∫
f (x, y; r̃)ξ(eλr̃x, eλr̃y; r − r̃) dr̃

=
∫
f (x, y; r̃)ξ(αr̃(x, y); r − r̃) dr̃,

for f ∈ Cc(H/Z ×G1) and ξ ∈ H. From this, we see that as aC∗-algebra, ÂV ∼=
C0(H/Z) �α G1.

We did not provide explicit computations here, but see the comments made in proof of
Proposition 3.9. TheC∗-algebrasAV andÂV considered here are actually degenerate cases
of the ones in that proposition. See also the proof ofProposition 3.12, which has a similar
result. �

Now that we have the multiplicative unitary operatorV encoding the matched pair
(G1,G2), our final task is to incorporate the cocycle term. In the setting of multiplicative
unitary operators, we need to look for a functionΘ : (H/Z ×G1) × (H/Z ×G1) → T

such thatVΘ is still multiplicative (see Section 8 of[1]). Note here that we are regardingΘ
as a unitary operator such thatΘξ(x, y, r; x′, y′, r′) = Θ(x, y, r; x′, y′, r′)ξ(x, y, r; x′, y′, r′).
Motivated byProposition 3.1, let us takeΘ to be the map

Θ(x, y, r; x′, y′, r′) := ē[ηλ(r
′)β(x, y′)].

As the next proposition shows, we obtain in this way a multiplicative unitary operator
VΘ = VΘ. It determines a pair ofC∗-bialgebras that are realized as cocycle bicrossed
products.
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Proposition 3.9 ([Quantization of Case (2)]).LetΘ and V be as above. Then the operator
VΘ := VΘ ∈ B(H⊗H) is a multiplicative unitary operator. Specifically

VΘξ(x, y, r; x
′, y′, r′) = (e−λr′ )nē[ηλ(r′)β(e−λr′x, y′ − e−λr′y)]

ξ(e−λr′x, e−λr′y, r + r′; x′ − e−λr′x, y′ − e−λr′y, r′).

The C∗-bialgebras associated with VΘ are:

A ∼= C0(G1) �
σ
γ (H/Z), Â ∼= C0(H/Z) �α G1,

where the comultiplications are given by �(a) = VΘ(a⊗ 1)V ∗
Θ for a ∈ A, and �̂(b) =

V ∗
Θ(1 ⊗ b)VΘ for b ∈ Â.

Proof. The operatorVΘ coincides with the multiplicative unitary operatorU obtained in
Proposition 3.1 of[9]. We will refer to that paper for the proof of the multiplicativity. If
Θ ≡ 1, the operatorVΘ degenerates intoV given inProposition 3.7, giving us the proof of
its multiplicativity we skipped.

As for the characterization of theC∗-algebraA as a twisted crossed product algebra
(in the sense of[18]), see Proposition 2.2 of[12], as well as[9]. As noted earlier,γ is
actually a trivial cocycle, whileσ is the group cocycle forH/Z defined inProposition 3.1.
In caseσ ≡ 1 (corresponding toΘ ≡ 1), it will degenerate toAV ∼= C0(G1) � (H/Z) in
Proposition 3.7.

The characterization for theC∗-algebraÂ can be found in Proposition 2.2 of[11]. Note
that Â does not change from the case without the cocycle, given inProposition 3.7(so
Â ∼= ÂV ). Only its comultiplication changes, bŷ�(b) = Θ∗�̂V (b)Θ. �

Our approach was different, but since we obtained the same multiplicative unitary op-
erator as in[9], we can use the result of that paper (as well as[12]) to construct the rest of
the quantum group structure for (A,�). It is a “quantizedC0(G)”, as well as a “quantized
C∗(H)”. (Note thatA ∼= C∗(H), if λ = 0.) It is the quantization of the Poisson–Lie group
G given inProposition 2.3(2).

Reflecting the fact that the groupG was non-unimodular, the quantum group (A,�) turns
out to be also non-unimodular (see[12]). See also[10,13], where we take advantage of the
close relationship between (G,H) and (A,�) to discuss the representation theory ofA. For
instance, a “quasitriangular, quantumR-matrix” type operator can be found, corresponding
to the classicalr-matrix given inAppendix A.

Meanwhile, (̂A, �̂) is the dual quantum group of (A,�). This is studied in[11], and
may be regarded as a “quantizedC0(H)”, or a “quantizedC∗(G)”. As H is unimodular, so
is (Â, �̂). This is a “quantum Heisenberg group”, but is different from the one constructed
in [22] or in [24]. See below.

Since we are satisfied with Case (2), let us now turn our attention to Case (1). Consider
the Poisson–Lie groupG and the Poisson bracket on it as described inProposition 2.3(1).



498 B.J. Kahng / Journal of Geometry and Physics 56 (2006) 485–511

Noting the similarity with Case (2), and with a slight modification of the procedure, we
obtain the following.

Proposition 3.10 ([Quantization of Case (1)]).

(1) Let G1 and G2 be defined by

G1 = {r : r ∈ R}, G2 = {(p, q) : p, q ∈ Rn}.

Consider also the group actions α : G1 ×G2 → G2 and γ : G2 ×G1 → G1, given
by

αr(p, q) := (e−λrp, eλrq), γ(p,q)(r) := r.

In this way, we obtain the matched pair (G1,G2).
(2) Let X ∈ B(L2(G1 ×G1)) and Y ∈ B(L2(H/Z ×H/Z)) be the operators defined

by Xξ(r; r′) = ξ(r + r′; r′), and by Yξ(x, y; x′, y′) = ξ(x, y; x′ − x, y′ − y). In addi-
tion, let Z ∈ B(L2(H/Z ×G1)) be such that Zξ(x, y; r) = ξ(eλrx, e−λry; r), and let
Θ(x, y, r; x′, y′, r′) := ē[r′β(x, y′)], which is considered as a unitary operator. Then
VΘ := (Z12X24Z

∗
12Y13)Θ is a multiplicative unitary operator contained in B(H⊗

H) = B(L2(H/Z ×G1 ×H/Z ×G1)).
(3) The C∗-bialgebras associated with VΘ are:

A ∼= C0(G1) �
σ
γ (H/Z) ∼= C∗(H), Â ∼= C0(H/Z) �α G1,

together with the comultiplications �(a) := VΘ(a⊗ 1)V ∗
Θ for a ∈ A, and �̂(b) :=

V ∗
Θ(1 ⊗ b)VΘ for b ∈ Â.

Remark 3.11. The proof is done in exactly the same way as in the earlier part of this
section, concerning Case (2). Similarly to Case (2), theC∗-algebra A is isomorphic to a
twisted crossed product algebra, with the twisting cocycleσr((x, y), (x′, y′)) := ē[rβ(x, y′)].
But by using (partial) Fourier transform, it can be shown easily thatA ∼= C∗(H). This
does not hold in Case (2). It reflects the fact that in Case (1), unlike in Case (2), the
Poisson bracket we began with is a linear Poisson bracket (dual to the Lie bracket
onH).

Again the approach was different, but we point out here that (Â, �̂) from Proposition
3.10is isomorphic to the example given by Van Daele in[24], as well as to the one given by
Szymczak and Zakrzewski[22]. Meanwhile, (A,�) is its dual counterpart. This is actually
the special case of the example considered by Rieffel in[20] (see also Section4.2below).
These three examples are considered to be among the pioneering works on non-compact
quantum groups. We will refer to these other papers for the construction of the rest of
quantum group structures for (Â, �̂) and for (A,�).

Representation theory for Case (1) has not been done in the literatures, but actually, due
to the fact that it corresponds to a linear Poisson bracket and also to a triangular classical
r-matrix (seeAppendix A), it is much simpler than that of Case (2). Meanwhile, reflecting
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the fact that bothH andG are unimodular, both (̂A, �̂) and (A,�) for Case (1) turns out to
be unimodular (i.e. their Haar weights are both right and left invariant).

3.2. Case (3)

Let us now consider the case of the Lie groupG and the Poisson bracket on it as described
in Proposition 2.3(3). Analogously toDefinition 3.3andProposition 3.10(1), we will begin
with the matched pair (G1,G2). Here, the groups are

G1 = {r : r ∈ R}, G2 = {(p, q) : p, q ∈ R
n},

together with the group actionsα : G1 ×G2 → G2 and γ : G2 ×G1 → G1, given by

αr(p, q) :=
(
p, q− r

∑
i,j Jijpiqj

)
andγ(p,q)(r) := r.

Note that, as before,G ∼= G1 ×G2 as a space, whileG1 andG2 may be regarded as
closed subgroups ofG such thatG1 ∩G2 = {(0,0,0)}. This is done by viewing (0,0, r)
and (p, q,0) as same asr ∈ G1 and (p, q) ∈ G2, respectively. Any element ofG can be
(uniquely) expressed as a product: (p, q, r) = (0,0, r)(p, q,0). The actions are defined so
that we have: (αr(p, q))(γ(p,q)(r)) = (p, q, r).

We will again work with the (x, y; r) variables, inH/Z ×G1. So the multiplicative
unitary operators associated with the groupsG1 andG2 areX ∈ B(L2(G1 ×G1)) and
Y ∈ B(L2(H/Z ×H/Z)), defined byXξ(r; r′) = ξ(r + r′; r′), for ξ ∈ L2(G1 ×G1), and
Yξ(x, y; x′, y′) = ξ(x, y; x′ − x, y′ − y), for ξ ∈ L2(H/Z ×G1).

The operator encoding the group actionsα and γ is Z ∈ B(L2(G2 ×G1)), defined

by Zξ(p, q; r) = ξ
(
p, q− r

∑
i,j Jijpiqj; r

)
. By using partial Fourier transform and the

Fourier inversion theorem, we see that it is equivalent to the following (same-named) oper-
atorZ ∈ B(L2(H/Z ×G1)):

Zξ(x, y; r) = ξ


x+ r

∑
i,j

Jijyjxi, y; r


 , for ξ ∈ L2(H/Z ×G1).

All this is again very similar toPropositions 3.4 and 3.5, as well asProposition 3.10(2).
Using the same strategy as inProposition 3.9or in Proposition 3.10, we define our

multiplicative unitary operatorVΘ, as follows. In particular, the definition of the cocycleΘ
comes directly from the expression of the Poisson bracket given inProposition 2.3(3). In
the below,H denotes the Hilbert spaceL2(H/Z ×G1).

Proposition 3.12. [Quantization of Case (3)].Define the unitary operator V ∈ B(H⊗
H) = B(L2(H/Z ×G1 ×H/Z ×G1)), by V = (Z12X24Z

∗
12)Y13. It is multiplicative. And

letΘ(x, y, r; x′, y′, r′) := ē[r′β(x, y′)
]
ē
[
r′2
2

∑
i,j Jijyjy

′
i

]
,considered as a unitary operator

contained in B(H⊗H).
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Then the function Θ is a cocycle for V. In this way, we obtain a multiplicative unitary
operator VΘ := VΘ ∈ B(H⊗H). Specifically

VΘξ(x, y, r; x
′, y′, r′)

= e


 r′2

2

∑
i,j

Jijyj(y
′
i − yi)


 ē[r′β(x, y′ − y)]

ξ


x− r′

∑
i,j

Jijyjxi, y, r + r′; x′ − x+ r′
∑
i,j

Jijyjxi, y′ − y, r′

 .

The C∗-bialgebras associated with VΘ are:

S ∼= C0(G1) �
σ
γ (H/Z), Ŝ ∼= C0(H/Z) �α G1,

together with the comultiplications �(a) := VΘ(a⊗ 1)VΘ∗ for a ∈ S, and �̂(b) :=
VΘ

∗(1 ⊗ b)VΘ for b ∈ Ŝ. Here, σ : r �→ σr is a continuous field of cocycles such that

σr((x, y), (x′, y′)) = ē
[
r2

2

∑
i,j Jijyjy

′
i

]
ē[rβ(x, y′)].

Proof. The multiplicativity ofV is a consequence of the fact that (G1,G2) forms a matched
pair, or equivalently, thatG is a group. The functionΘ is a cocycle forV, sinceVΘ is
also multiplicative. The verification of the pentagon equation,W12W13W23 = W23W12 for
W = VΘ, is straightforward.

As usual, theC∗-bialgebras associated withVΘ are obtained by

S = {(ω ⊗ idH)(VΘ) : ω ∈ B(H)∗}(⊆ B(H)),

Ŝ = {(idH ⊗ ω)(VΘ) : ω ∈ B(H)∗}(⊆ B(H)).

To see the specificC∗-algebra realization ofS, consider its typical element (ω ⊗ idH)(VΘ),
whereω ∈ B(H)∗. Without loss of generality, we may assume thatω = ωξ,η, for ξ, η ∈ H.
(We may even assume thatξ andη are continuous functions having compact support.) It is
a rather standard notation, and is defined byωξ,η(T ) = 〈Tξ, η〉, for T ∈ B(H). It is known
that linear combinations of theωξ,η are (norm) dense inB(H)∗. Now for ζ ∈ H, we have:

((ωξ,η ⊗ idH)(VΘ))ζ(x, y, r)

=
∫

(VΘ(ξ ⊗ ζ))(x̃, ỹ, r̃; x, y, r)η(x̃, ỹ, r̃) dx̃ dỹ dr̃

=
∫
e


 r2

2

∑
i,j

Jijỹj(yi − ỹi)


 ē[rβ(x̃, y − ỹ)]ξ


x̃− r

∑
i,j

Jijỹjxi, ỹ, r̃ + r




η(x̃, ỹ, r̃)ζ


x− x̃+ r

∑
i,j

Jijỹjxi, y − ỹ, r


 dx̃ dỹ dr̃
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=
∫
ē


 r2

2

∑
i,j

Jijỹj(yi − ỹi)


 ē[rβ(x̃, y − ỹ)]ξ(x̃, ỹ, r̃ + r)

η


x̃+ r

∑
i,j

Jijỹjxi, ỹ, r̃


ζ(x− x̃, y − ỹ, r) dx̃ dỹ dr̃

=
∫
F (x̃, ỹ, r)σr((x̃, ỹ), (x− x̃, y − ỹ))ζ(x− x̃, y − ỹ, r) dx̃ dỹ,

whereF (x, y, r) = ∫
ξ(x, y, r̃ + r)η

(
x+ r

∑
i,j Jijyjxi, y, r̃

)
dr̃, which is a continuous

function sinceξ andη areL2-functions. And

σr((x, y), (x′, y′)) = ē


 r2

2

∑
i,j

Jijyjy
′
i


 ē[rβ(x, y′)].

It immediately follows from these observations that:

S ∼= {(ω ⊗ idH)(VΘ) : ω ∈ B(H)∗}‖ ‖ ∼= C0(G1) �
σ
γ (H/Z),

which is the twisted crossed product algebra with (trivial) actionγ, and whose twisting is
given by the cocycleσ : r �→ σr.

Similar computation as above (and similar also to the case ofÂ in Proposition 3.9and
of ÂV in Proposition 3.7) shows that̂S ∼= C0(H/Z) �α G1, which is the crossed product

algebra with actionα, given byαr(x, y) =
(
x+ r

∑
i,j Jijyjxi, y

)
. �

Essentially, (S,�) is a “quantizedC∗(H)” or a “quantizedC0(G)”. For instance, ifJ ≡ 0,
then we have:S ∼= C∗(H). Let us also look at the comultiplication� of S below, which
shows that it reflects the group multiplication law onG.

Proposition 3.13. For φ ∈ Cc(G), define Lφ ∈ B(H) be defined by

Lφζ(x, y, r) :=
∫
φ∨(x̃, ỹ, r)σr((x̃, ỹ), (x− x̃, y − ỹ))ζ(x− x̃, y − ỹ, r) dx̃ dỹ,

where σ is the cocycle as in Proposition 3.12, andφ∨ denotes the (partial) Fourier transform
of φ. Namely, φ∨(x, y, r) = ∫

φ(p, q, r)e[p · x+ q · y] dpdq. We know from the proof of

Proposition 3.12that S ∼= L(Cc(G))
‖ ‖

, as a C∗-algebra.
The comultiplication, �, on S is given by �(a) = VΘ(a⊗ 1)VΘ∗ for a ∈ S. For φ ∈

Cc(G), this becomes:�(Lφ) = (L⊗ L)�(φ), where�(φ) ∈ Cb(G×G) is the function de-
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fined by

(�(φ))(p, q, r;p′, q′, r′) = φ


p+ p′, q+ q′ + r′

∑
i,j

Jijpiqj, r + r′

 .

Proof. WriteLφ = ∫
(F−1φ)(x̃, ỹ, z̃)Lx̃,ỹ,z̃ dx̃ dỹ dz̃, whereF−1φ ∈ Cc(H) is the (inverse)

Fourier transform ofφ. ThenLx̃,ỹ,z̃ ∈ B(H) is such that

Lx̃,ỹ,z̃ξ(x, y, r) = ē(rz̃)σr((x̃, ỹ), (x− x̃, y − ỹ))ξ(x− x̃, y − ỹ, r).

Comparing with the definition ofLφ given above, we may regardLx̃,ỹ,z̃ asLx̃,ỹ,z̃ = LF ,
where the functionF ∈ Cb(G) is such that:F (p, q, r) = ē[p · x̃+ q · ỹ + rz̃]. Actually,
Lx̃,ỹ,z̃ is contained in the multiplier algebraM(S). In a sense, the operatorsLx̃,ỹ,z̃ for
(x̃, ỹ, z̃) ∈ H , form the building blocks for the “regular representation”L (or equivalently,
for C∗-algebraS).

For ζ ∈ H, we have:

(�(Lx̃,ỹ,z̃))ζ(x, y, r; x
′, y′, r′)

= VΘ(Lx̃,ỹ,z̃ ⊗ 1)VΘ
∗ζ(x, y, r; x′, y′, r′)

= ē[(r + r′)z̃]ē


 r2

2

∑
i,j

Jijỹj(yi − ỹi)


 ē[rβ(x̃, y − ỹ)]

ē


 r′2

2

∑
i,j

Jijỹj(y
′
i − ỹi)


 ē[r′β(x̃, y′ − ỹ)]ē


rr′ ∑

i,j

Jijỹj(yi − ỹi)




ζ


x− x̃− r′

∑
i,j

Jijỹjxi, y − ỹ, r; x′ − x̃, y′ − ỹ, r′

 .

Meanwhile, consider�(F ) ∈ Cb(G×G), given by

(�(F ))(p, q, r;p′, q′, r′)

= ē


(p+ p′)·x̃+ (q+ q′) · ỹ + r′

∑
i,j

Jijpiỹj + (r + r′)z̃


 .

Then by a straightforward computation using Fourier inversion theorem, we can see that
for ζ ∈ H:

(L⊗ L)�(F )ζ(x, y, r; x
′, y′, r′) = (�(Lx̃,ỹ,z̃))ζ(x, y, r; x

′, y′, r′).

In other words, (L⊗ L)�(F ) = �(LF ). Remembering the definitions, it follows easily that
�(Lφ) = (L⊗ L)�(φ) for anyφ ∈ Cc(G), where�(φ) is as defined above. �
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Remark 3.14. This proposition shows that forφ ∈ Cc(G), the comultiplication sends it to
�(φ) ∈ Cb(G×G), such that

(�(φ))(p, q, r;p′, q′, r′) = φ((p, q, r)(p′, q′, r′)),

preserving the group multiplication law onG as given inProposition 2.3(3). This result
supports our assertion made earlier that (S,�) is a “quantizedC0(G)”.

At this moment, theC∗-bialgebra (S,�) is just a quantum semi-group. For it to be
properly considered as a locally compact quantum group, we need further discussions on
maps like antipode or Haar weight (see[14] for general theory). For this, we may follow
the methods we used earlier in[12] or [11], taking advantage of the fact that (S,�) is a
“quantizedC0(G)”. Meanwhile, by introducing a deformation parameter, we could also
show that (S,�) is indeed a deformation quantization of the Poisson–Lie groupG, in the
direction of its Poisson bracket given inProposition 2.3(3). [For Case (2), the deformation
quantization is carried out in[9].]

In the current paper, though, we will be content to have demonstrated our program, and
shown a constructive method of obtaining an appropriate multiplicative unitary operator for
the new example (S,�).

Meanwhile, notice the similarity between our example (S,�) above and the one con-
structed by Enock and Vainerman in Section 6 of[6]. The methods of construction
are rather different between the two. However, looking at the comultiplications and the
cocycles involved, we see a strong resemblance. What this means is that the ingredi-
ents at the classical level (information about the groupsH and G) are more or less the
same.

On the other hand, there is a very significant difference. Namely, the example of[6]
has the underlying von Neumann algebra isomorphic to the group von Neumann algebra
L(H) = C∗(H)′′ of H. While in our case,S is isomorphic to a “twisted” crossed product
algebra: unlessJ ≡ 0, theC∗-algebraS is not isomorphic toC∗(H).

In the author’s opinion, the example (S,�) given here has more merit, considering
that its Poisson–Lie group counterpart and its multiplicative unitary operator have all been
obtained; the relationship between the Poisson bracket and the cocycle bicrossed product
construction of the multiplicative unitary operator have been manifested; as well as that the
underlyingC∗-algebra is built on the framework of twisted crossed product algebras (more
general than ordinary groupC∗-algebras or group von Neumann algebras).

4. Other examples

In this section, we give more constructions of several other examples of quantum
(semi-)groups. Just as in the previous section, each of these examples will have a twisted
crossed product as its underlyingC∗-algebra, and the construction can be carried out within
the framework of cocycle bicrossed products. These examples are actually slight general-
izations of the basic examples given in Section3, and they are considered as coming from
Heisenberg-type Lie bialgebras.
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Since the examples in this section will not be fundamentally different from the basic
examples covered in Section3, we will try to make discussions rather brief. We do not even
plan to say much about the Poisson–Lie group counterparts to the examples. As before, we
will give, for the purpose of efficiency, just the appropriate multiplicative unitary operators.
This can be done by giving some small modifications to the twisting cocycles we had above.
As in Section3, discussions about correctly establishing the associatedC∗-bialgebras as
(C∗-algebraic) locally compact quantum groups will be skipped.

4.1. “Mixed” case of Cases (1) and (2)

Consider the Lie groupG defined by the multiplication:

(p, q, r)(p′, q′, r′) = (eλr
′
p+ p′, eνr

′
q+ q′, r + r′),

whereλ, ν ∈ R. Note that ifν = −λ or ν = λ, it coincides with the groupG given in Case
(1) or Case (2) ofProposition 2.3, respectively. In fact, the Lie groupG above is obtained
as a dual Poisson–Lie group of (H, δ4), whereδ4 : h→ h ∧ h is the cobracket defined by
δ4 = (

λ−ν
2λ

)
δ1 + (

λ+ν
2λ

)
δ2 [recallDefinition 2.1]. In this sense, it is a “mixed” case of Cases

(1) and (2) earlier.
To find the quantum counterpart ofG, or equivalently, the multiplicative unitary operator

for the quantum (semi-)group, it really boils down to “changing of the cocycles”. So as
before, letH be the Hilbert space consisting ofL2-functions in the (x, y, r) variables. Also

let η(λ,ν) := e(λ+ν)r−1
λ+ν . Then defineVΘ ∈ B(H⊗H), given by

VΘξ(x, y, r; x
′, y′, r′) = (e−(λ+ν)r′/2)nē[η(λ,ν)(r

′)β(e−λr′x, y′ − e−νr′y)]

ξ(e−λr′x, e−νr′y, r + r′; x′ − e−λr′x, y′ − e−νr′y, r′).

It is obtained following pretty much the same procedure as in the cases considered in the
previous section. As we see below, it determines a twisted crossed product algebra whose
twisting cocycle is given byσr((x, y), (x′, y′)) := ē[η(λ,ν)(r)β(x, y′)].

Proposition 4.1. Let VΘ be as in the previous paragraph. It is a multiplicative unitary
operator. The C∗-bialgebras associated with VΘ are:

A ∼= C0(G1) �
σ
γ (H/Z), Â ∼= C0(H/Z) �α G1,

together with the comultiplications �(a) := VΘ(a⊗ 1)VΘ∗ for a ∈ A, and �̂(b) :=
VΘ

∗(1 ⊗ b)VΘ for b ∈ Â. Here, G1 is the abelian group G1 = {r : r ∈ R}; the action γ
is trivial; and the action α is defined by αr(x, y) = (eλrx, eνry). Finally, σ : r �→ σr is a
continuous field of cocycles such that

σr : H/Z ×H/Z � ((x, y), (x′, y′)) �→ ē[η(λ,ν)(r)β(x, y′)] ∈ T.
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Proof. Checking the multiplicativity ofVΘ is straightforward. To see the realizations of
theC∗-algebrasA and Â, we use the same method as in the proof ofProposition 3.12,
investigating the operators (ω ⊗ id)(VΘ), ω ∈ B(H)∗ and (id⊗ ω′)(VΘ), ω′ ∈ B(H)∗.

In this way, we can show thatA ∼= L(Cc(H/Z ×G1))
‖ ‖

(⊆ B(H)), whereL is the regular
representation defined by

Lf ξ(x, y, r) =
∫
f (x̃, ỹ, r)ē[η(λ,ν)(r)β(x̃, y − ỹ)]ξ(x− x̃, y − ỹ, r) dx̃ dỹ.

Heref ∈ Cc(H/Z ×G1) andξ ∈ H. We can see from this observation that theC∗-algebra
A is a twisted crossed product algebra, with trivial action and the twisting cocycle given by
σ : r �→ σr.

Similarly, we can also show thatÂ ∼= ρ(Cc(H/Z ×G1))
‖ ‖

(⊆ B(H)), whereρ is also the
regular representation defined by

ρf ξ(x, y, r) =
∫
f (x, y, r̃)ξ(eλr̃x, eνr̃y, r − r̃) dr̃,

for f ∈ Cc(H/Z ×G1) andξ ∈ H. From this, it follows easily that̂A ∼= C0(H/Z) �α G1,
which is the crossed product algebra with actionα. �

Similarly as before, (A,�) is considered as a “quantizedC∗(H)” or a “quantizedC0(G)”.
Further discussion about this case will parallel that of Case (2).

4.2. Example of Rieffel’s [20]

Let us now allow our groupH to have a higher dimensional center,Z = {(0,0, z) : z ∈
R
m}. ThenH will be now (2n+m)-dimensional. For convenience, let us keep the same

notation and express the group law onH as

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z+ z′ + β(x, y′)).

The differences from the definition ofH given in Section2 are thatz and z′ are now
regarded as vectors (for instance,z = z1z1 + · · · + zmzm), and thatβ(·, ·) is no longer the
inner product. It will be understood as aZ-valued bilinear map. The new groupH is still
a two-step nilpotent Lie group which closely resembles the Heisenberg Lie group. This is
actually the group considered by Rieffel in[20].

Let G be defined by the multiplication law:

(p, q, r)(p′, q′, r′) = (π(r′)p+ p′, ρ(r′)q+ q′, r + r′),

whereπ andρ are representations of the groupG1 = {(0,0, r) : r ∈ R
m} on the spaces

{(p,0,0) : p ∈ R
n} and {(0, q,0) : q ∈ R

n}, respectively. Let us impose the following
“compatibility condition” betweenπ, ρ, andβ, as given by Rieffel.
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Compatibility condition [20]: assume thatβ(π(r)tx, ρ(r)ty) = β(x, y) and that
(det(π(r)))(det(ρ(r))) = 1, for all r, x, y.

This compatibility condition makes the groupG closely analogous to our Case (1) earlier,
in the sense thatG (together with the linear Poisson bracket dual to the Lie bracket onH)
becomes the dual Poisson–Lie group ofH. If Z is 1-dimensional, the situation will be exactly
same as in Case (1). Because of this, the quantization can be carried out in essentially the
same way as in Case (1).

We thus obtain the following unitary operatorVΘ ∈ B(H⊗H), whereH is the Hilbert
space consisting ofL2-functions in the (x, y, r) variables:

VΘξ(x, y, r; x
′, y′, r′) = ē[r′ · β(π(−r′)tx, y′ − ρ(−r′)ty)]

ξ(π(−r′)tx, ρ(−r′)ty, r + r′; x′ − π(−r′)tx, y′ − ρ(−r′)ty, r′).
As before,VΘ is easily proved to be multiplicative, and it again determines twoC∗-

bialgebras (A,�) and (Â, �̂) [Result is analogous toProposition 3.10]. As C∗-algebras,
we will have:A ∼= C∗(H), andÂ ∼= C0(H/Z) �α G1, whereαr(x, y) = (π(r)tx, ρ(r)ty).
TheC∗-algebraA being isomorphic to the groupC∗-algebraC∗(H) again reflects the point
that the Poisson bracket onG is linear.

The method was different, but (A,�) obtained in this way, together withVΘ, is exactly
the example constructed by Rieffel in[20]. It was really among the first examples of quantum
groups given by deformation quantization process, and therefore, was the guiding example
of all the examples considered in this work and many others.

4.3. A two-step solvable Lie group: non-unimodular case

Let H and G be (2n+m)-dimensional groups, defined by the same multiplication
laws as in Section4.2. But this time, we will no longer require the “compatibility con-
dition”. To distinguish the current case from the previous example, let us assume that
β(π(r)tx, ρ(r)ty) �= β(x, y) and that (det(π(r)))(det(ρ(r))) �= 1. So the groupG is a non-
unimodular, (two-step) solvable Lie group.

Then the setting becomes similar to the example given in Section4.1. Therefore, what
we need now is to find the cocycle expression corresponding toσr : ((x, y), (x′, y′)) �→
ē[η(λ,ν)(r)β(x, y′)] of Proposition 4.1.

Note however that sinceZ andG1 are higher than 1-dimensional, the counterparts to
λ andν are no longer scalars. So it is somewhat awkward to make sense of the expression

η(λ,ν)(r) = e(λ+ν)r−1
λ+ν . On the other hand, we can get around this problem if we only consider

the numerator part ofη(λ,ν)(r). This means that we are changing the Poisson bracket on
G by the factor of (λ+ ν). Sinceλ andν are fixed, this modification will not affect the
Poisson duality betweenH andG (although we do not give any explicit description of the
Poisson bracket here).

Remark 4.2. One drawback is that in so doing,λ and ν lose some of their flavors as
deformation parameters for the cobracket. Furthermore, ifλ = ν = 0, we will no longer
have the linear Poisson bracket as before. (We instead obtain a trivial Poisson bracket.)
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Nevertheless, sinceλ andν are fixed, non-zero constants (not considered as parameters),
we do not have to worry about these problems here.

So let us look for a counterpart to the cocycle ¯e[(e(λ+ν)r − 1)β(x, y′)]. For this, we will
takeē[Σ(β(π(r)tx, ρ(r)ty′) − β(x, y′))], whereΣ( ) : Z → R is defined by

Σ(z1z1 + z2z2 + · · · + zmzm) = z1 + z2 + · · · + zm.

Note that whenZ is 1-dimensional, both cocycles clearly agree. Using this, let us write
down the following unitary operatorVΘ ∈ B(H⊗H) (notice the similarity with the one
obtained in Section4.1):

VΘξ(x, y, r; x
′, y′, r′) = |(det(π(−r′)))(det(ρ(−r′)))|1/2

ē[Σ(β(x, ρ(r′)ty′ − y) − β(π(−r′)tx, y′ − ρ(−r′)ty))]
ξ(π(−r′)tx, ρ(−r′)ty, r + r′; x′ − π(−r′)tx, y′ − ρ(−r′)ty, r′).

It is again multiplicative, and it thus determines a pair ofC∗-bialgebras (A,�) and (Â, �̂).
AsC∗-algebras, we have:A ∼= C0(G1) �

σ
γ (H/Z), andÂ ∼= C0(H/Z) �α G1, whereγ is the

trivial action,αr(x, y) = (π(r)tx, ρ(r)ty), andσ : r �→ σr is the continuous field of cocycles
given byσr((x, y), (x′, y′)) = ē[Σ(β(π(r)tx, ρ(r)ty′) − β(x, y′))]. All these computations
are done following the same method we have been using so far.

Remark 4.3. Note that the mapΣ defined above is none other than the inner product:Σ(z) =
z · 1, where1 = 1z1 + · · · + 1zm. Of course, there is no particular reason for choosing the
vector1 here, and any fixed vector inZ will be sufficient for our purposes. Still, they will all
give rise to essentially the same quantum group since we can vary the bilinear mapβ(·, ·) to
accommodate the changes. A more significant observation is that the map ((x, y), (x′, y′)) �→
β(π(r)tx, ρ(r)ty′) − β(x, y′) is already an additive cocycle having values inZ.

The examples (A,�) and (Â, �̂) given in this subsection are not necessarily very com-
plicated ones. However, as far as the author knows, these examples have not been studied
before. On the other hand, they are really natural generalizations of the examples explored
by the author in his previous papers. Meanwhile, even though we are not explicitly inves-
tigating Haar weight and the rest of the quantum group structure maps here, we note that
unlike the example in Section4.2 (or [20]), the quantum group (A,�) given here will be
non-unimodular.

Appendix A. The classical r-matrices and the Poisson structures on H

In many cases, compatible Poisson brackets on a Lie group (or equivalently, Lie bialgebra
structures) are known to arise from certain solutions of the classical Yang–Baxter equation
(CYBE), called theclassical r-matrices. In thisAppendix A, we will first give a very brief
background discussion on classicalr-matrices (see[4,3] for more). We will then show that
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our three basic Lie bialgebra structures inDefinition 2.1are indeed obtained from some
specific classicalr-matrices.

In general, letg be a Lie algebra and letr ∈ g⊗ g be an arbitrary element. Define a map
δr : g→ g⊗ g, by

δr(X) = adX(r), X ∈ g. (A.1)

Thenδr is a one-cocycle ong with values ing⊗ g. (Actually, it is a coboundary ong). The
following result holds.

Proposition A.1 (See[4]). Let g be a Lie algebra and let r ∈ g⊗ g. The map δr given by
Eq.(A.1) defines a Lie bialgebra structure on g, if and only if the following two conditions
are satisfied:

• r12 + r21 is a g-invariant element of g⊗ g.
• [r12, r13] + [r12, r23] + [r13, r23] is a g-invariant element of g⊗ g⊗ g.

In this case, g is said to be a coboundary Lie bialgebra.

The simplest way to satisfy the second condition of the proposition is to assume that:

[r12, r13] + [r12, r23] + [r13, r23] = 0.

This is called theclassical Yang–Baxter equation (CYBE). A solution of the CYBE is called
a “classicalr-matrix”. A coboundary Lie bialgebra structure coming from a solution of the
CYBE is said to bequasitriangular. If the classicalr-matrix further satisfiesr12 + r21 = 0
(i.e. it is a skew solution of the CYBE), it is said to betriangular. This terminology is
closely related with the “quantum” situation and the so-called(quasitriangular/triangular)
quantum universal R-matrices.

Remark A.2. The quantization problem of triangular and quasitriangular Lie bialgebras is
an important topic in the quantum group theory, mostly (but not exclusively) at the quantized
universal enveloping algebra (QUE algebra) setting. Practically, these are the Lie bialgebras
that are more or less expected to be quantized. Moreover, the “quantumR-matrices” often
play interesting roles in the representation theory of the quantum group counterparts to the
Poisson–Lie groups (Lie bialgebras). See[4,3].

Let us now turn our attention to the (2n+ 1)-dimensional Heisenberg Lie groupH and
the Heisenberg Lie algebrah, as given in Section2. Consider also the following “extended”
Heisenberg Lie algebra.

Definition A.3. Let h̃ be the (2n+ 2)-dimensional Lie algebra spanned by the basis ele-
mentsxi, yi (i = 1, . . . , n), z,d, with the brackets

[xi, yj] = δijz, [d, xi] = xi, [d, yi] = −yi, z is central.
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The Lie group corresponding tõh is the “extended” Heisenberg Lie group̃H . For group
multiplication law onH̃ , see Example 3.6 of[9] or Section 2.1 of[10].

For this extended Heisenberg Lie algebra, we can find the following solutions of the clas-
sical Yang–Baxter equation (CYBE),r ∈ h̃⊗ h̃. The proofs are straightforward. It follows
that we now have the Lie bialgebra structures onh̃.

Proposition A.4.

(1) Let r = λ(z ⊗ d − d ⊗ z), λ �= 0. Since span(z,d) is an abelian subalgebra of h̃, it is
easy to see that r satisfies the CYBE: [r12, r13] + [r12, r23] + [r13, r23] = 0. Since r is
also a skew solution, we thus obtain on h̃ a “triangular” Lie bialgebra structure δ̃1,
given by δ̃1(X) := adX(r), X ∈ h̃. Specifically,

δ̃1(xi) = λ(xi ⊗ z − z ⊗ xi) = λxi ∧ z,

δ̃1(yi) = −λyi ∧ z, δ̃1(z) = 0, δ̃1(d) = 0.

(2) Let r = 2λ(
∑n
i=1(xi ⊗ yi) + 1

2(z ⊗ d + d ⊗ z)), λ �= 0. We can show that r satisfies
the CYBE, and also that r12 + r21 is h-invariant. So we obtain a “quasitriangular” Lie
bialgebra structure on h̃ given by the following δ̃2:

δ̃2(xi) = adxi (r) = λxi ∧ z, δ̃2(yi) = adyi (r) = λyi ∧ z,

δ̃2(z) = adz(r) = 0, δ̃2(d) = add(r) = 0.

Note thath(⊆ h̃) is a Lie subalgebra of̃h, and also thatδ1 andδ2 given in Definition
2.1 are obtained by restricting̃δ1 and δ̃2 above. In other words, (h, δi) (i = 1,2) is asub-
bialgebra of (h̃, δ̃i) (i = 1,2), and hence a Lie bialgebra itself. In this way, we recover the
Poisson brackets of Cases (1) and (2).

For Case (3), see the following proposition (proof is again straightforward). In this case,
we do not need to introduce the extended Heisenberg Lie algebra. As in Section2, let (Jij)
be a skew,n× n matrix (n ≥ 2).

Proposition A.5. Let r ∈ h⊗ h be defined by r = ∑n
i,j=1 Jijxi ⊗ xj. Since span(xi : i =

1,2, . . . , n) ⊆ h is an abelian subalgebra, r clearly satisfies the CYBE. It is also a skew
solution. Therefore, we obtain a “ triangular” Lie bialgebra structure δ3 on h:

δ3(xj) = 0, δ3(yj) =
n∑
i=1

Jijxi ∧ z, δ3(z) = 0.

Having the knowledge that our Poisson brackets come from certain classicalr-matrices
is quite useful. For instance, in[9] (concerning Case (2)), we could find an operator
R which can be considered as a “quantum universalR-matrix” (the quantum counter-
part to the classicalr-matrix). Using the operatorR in [10], we could show an interest-
ing (genuinely quantum) property of “quasitriangularity” in the representation theory of
(A,�).
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